4.7 Quantum Theory of Metals

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

1

Fermi-Dirac Distribution

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

What does the Ferm-Dirac distribution tell us?

- A) the probability of a state being occupied
- B) the average occupancy of a state
- C) both (A) and (B)

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

3

One electron in a two level system:

(that can exchange energy with the environment)

Spin: 1

 E_2 ψ_1 ψ_2 ψ_3 ψ_4 ψ_4 ψ_4 ψ_4 ψ_5

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

What is the classical limit?

- A) $f(E) \rightarrow 0$
- B) f(E) → 1
- C) $f(E) \rightarrow \infty$
- D) ????

UST Spring 201

HYS 225 Applications of Modern Physics: from the atom to the diode

c

What is the classical limit?

- A) $f(E) \rightarrow 0$
- B) f(E) → 1
- C) $f(E) \rightarrow \infty$
- D) ????

When the probability of *any* state being occupied is small, such that the probability of two particles occupying the same state is *very* small.

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

4/13/11

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

What is the occupancy of the Fermi level at T > 0?

- A) 1
- B) ½
- c) 0
- D) ∞

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

.

FSG 45p27ng 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

4/13/11

Why can we change the upper limit

of
$$\int_{0}^{E_{F}+\Phi} g(E)f(E)dE$$
 to ∞ ?

- A) because f(E) = 1 for $E > E_F$
- B) because f(E) = 0 for $E > E_F$
- C) because $f(E) \rightarrow 0$ for $E > E_F$
- D) because $f(E) \rightarrow \infty$ for $E > E_F$

UST Spring 201

HYS 225 Applications of Modern Physics: from the atom to the diode

(

