1.3 More bonding

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the dioc

1

Van der Waals bonding: induced dipoles

On average, a symmetric molecule (like H₂) is electrically neutral:

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

Does the shape of the molecule matter?

Why?

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

į

Van der Waals bonding: permanent dipoles (hydrogen bonding)

Some molecules (HCl, H_2O) have permanent dipoles:

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

Lennard-Jones (6-12) potential:

$$E(r) = -A r^{-6} + B r^{-12}$$

$$dE/dr = 0 \rightarrow r_0$$

$$-E(r_0) = E_0$$

*** See Example 1.4 in Kasap

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

1.4.1 Mean Kinetic Energy and Temperature

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diod

1

Derivation for Exam #1

a) By considering a gas in a cubic container, derive an expression that relates the pressure (P), volume (V), and number of molecules (N) to the average kinetic energy per molecule ($\frac{1}{2}m\overline{v^2}$).

UST Spring 201

HYS 225 Applications of Modern Physics: from the atom to the diode

3

Derivation for Exam #1

b) By comparing the expression above to the empirical gas equation $PV = \frac{N}{N_A}RT$

obtain a relationship between the average kinetic energy per molecule and temperature (T).

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

$$PV = \left(\frac{N}{N_A}\right)RT$$

R = gas constant,

T = temperature,

P = gas pressure,

V = volume,

 N_A = Avogadro's number

$$PV = \frac{2}{3}N\left(\frac{1}{2}mv^{2}\right)$$

$$P = \text{gas pressure}$$

= mean square velocity

N = number of gas molecules m =mass of the gas molecules

$$\overline{KE} = \frac{1}{2}m\overline{v^2} = \frac{3}{2}kT$$

 $k = R/N_A$ = Boltzmann constant

What is the mean translational kinetic energy of a single ideal gas molecule at room temperature (T = 293 K)?

$$\overline{KE} = \frac{3}{2}kT$$

**Note that $k = 1.38 \times 10^{-23} J/K$

What is the mean translational kinetic energy of a single ideal gas molecule at room temperature (T = 293 K)?

$$\overline{KE} = \frac{3}{2}kT$$

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod