Bohr model of the atom

(not quite right)

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode $\,$

Basic connections between r, v, and energy!

$$F = ma = F_{cent} = ?$$

- A) -mvr
- B) -mv²/r C) -v²/r²
- D) I don't remember learning anything related to this

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

An electron in the Bohr model of hydrogen atom:

- A) is always at one particular distance from the nucleus
- B) can be at any distance from the nucleus.
- C) is at certain distances from the nucleus corresponding to energy levels it can be in.
- D) must always go into the center where potential energy is lowest.

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

15

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode $\,$

16

How do the electrons fit into the available orbitals?

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

17

A brief review of chemistry

Filling orbitals ... lowest to highest energy, 2 e's per orbital

Oxygen =
$$1s^2 2s^2 2p^4$$

ONC
B
Be
Li
He
H

Oxygen = $1s^2 2s^2 2p^4$
 $3s$
 $3s$
 $2s$
 e
 e

Shell not full – reactive
Shell full – stable

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

18

What is the electronic configuration of $^{12}\mbox{Mg}$?

- A) $1s^2 2s^2 3s^2 4s^2 5s^2 6s^2$
- B) $1s^2 2s^2 2p^2 3s^2 3p^2 3d^2$
- C) $1s^2 2s^2 2p^6 3s^2$
- D) [Ne] 3s²

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

19