HW #23

1. Show that at T = 0K, the average energy of an electron in a metal (in the free electron model) is

$$E_{ave} = \frac{3}{5}E_{F0}$$

- 2. **(Kasap 4.7 (a) and (b)) Fermi energy of Cu** The Fermi energy of electrons in copper at room temperature is 7.0 eV.
- a) What is the speed v_F of conduction electrons with energies around E_F in copper? By how many times is this larger than the average thermal speed $v_{thermal}$ of electrons, if they behaved like an ideal gas? Why is v_F much larger than $v_{thermal}$?
- b) What is the De Broglie wavelength of these electrons? Will the electrons get diffracted by the lattice planes in copper, given that interplanar separation in copper is 2.09Å? (*Hint:* remember the Bragg condition $2dsin\theta=n\lambda$; find the relationship between λ and d that results in $sin\theta>1$ and hence no diffraction).
- 3. **(Kasap 4.8) Free electron model, Fermi energy and density of states** Na and Au both are valency 1 metals; that is, each atom donates one electron to the sea of conduction electrons.
- a) Calculate the Fermi energy (in eV) of each at 300K and 0K.
- b) Calculate the mean speed of all the conduction electrons and also the speed of electrons at E_{F} for each metal.
- c) Calculate the density of states as states per eV per cm³ at the Fermi energy and also at the center of the band, to be taken at $(E_F + \Phi)/2$ (see Table 4.1 for Φ).