HW #7

- 1. a) The molar specific heat of a diatomic gas is measured at constant volume and found to be 29.1 J/(mol K). What are the types of energy that are contributing to the molar specific heat?
 - i. Translation only
 - ii. Translation and rotation only
 - iii. Translation and vibration only
 - iv. Translation, rotation and vibration

Give a one sentence explanation of your answer.

b) Why does a diatomic gas have a greater energy content per mole than a monatomic gas at the same temperature?

2. (Kasap 1.12) Heat Capacity

- a) Calculate the heat capacity per mole and per gram of N_2 gas, neglecting the vibrations of the molecule (because they are only relevant at high temperatures). How does this compare with the experimental value of 0.743 J/gK?
- b) Calculate the heat capacity per mole and per gram of CO_2 gas, neglecting the vibrations of the molecule. How does this compare with the experimental value of 0.648 J/gK? Assume that the CO_2 molecule is linear (0-C-O) so that it has two rotational degrees of freedom.
- c) Based on the Dulong-Petit rule (for a solid $C_m = 3R$, see Kasap p. 30), calculate the heat capacity per mole and per gram of solid silver. How does this compare with the experimental value of 0.235 J/gK?
- d) Based on the Dulong-Petit rule, calculate the heat capacity per mole and per gram of the silicon crystal. How does this compare with the experimental value of 0.71 J/gK?