i) What is oscillating as light propagates? i) the air molecules ii) the electric field iii) the magnetic field iv) nothing	
b) If two waves are out of phase by ainterfere destructively. i) integer ii) half-integer	number of wavelengths, they

Show that $E_y(x,t) = E_0 \sin(kx - wt)$ is a solution to the wave equation

$$\frac{\partial^2 E}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$$

$$\frac{\partial E}{\partial x} = k t_0 \cos(kx - \omega t)$$

$$\frac{\partial^2 \xi}{\partial x^2} = -k^2 \xi_0 \sin(kx - \omega t)$$

$$\frac{\partial E}{\partial t} = -wt.\cos(kx-wt)$$

$$\frac{\partial^2 f}{\partial t^2} = -\omega^2 f \sin(kx - \omega t)$$

$$-k^{2} \neq \sin(kx-\omega t) = -\frac{\omega^{2}}{c^{2}} \neq \sin(kx-\omega t)$$

$$|c^2 = \frac{\omega^2}{c^2}$$

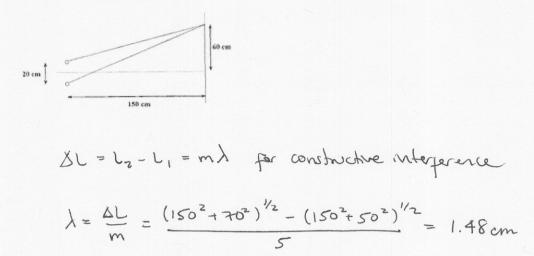
for waves, $v = \lambda f = \frac{\omega}{k}$, so for light $c = \frac{\omega}{k}$, then

$$k^2 = \frac{\omega^2}{(\omega/k)^2}$$

$$k^2 = \frac{w^2 k^2}{w^2}$$

1 = 1 i.e. the left hand side and right-hand sides are equal, so t = to sin(kx-wt) is a solution.

Show that the right-hand-side of the equation for the intensity of light, $I = \frac{1}{2}c\varepsilon_0 E_0^2$, has units of energy per unit area per second.


$$\begin{bmatrix} c \end{bmatrix} = \frac{m}{s}$$
$$\begin{bmatrix} \varepsilon_0 \end{bmatrix} = \frac{As}{m}$$
$$\begin{bmatrix} \varepsilon_0 \end{bmatrix} = \frac{V}{m}$$

[I] =
$$\left[C \in \mathcal{E}_0^2\right] = \frac{M}{g} \cdot \frac{Ag}{VgN} \cdot \frac{V^Z}{m^2} = \frac{AV}{m^2}$$

current is charge over time, so $A = \frac{C}{s}$
and potential is energy over charge $\left(\Delta V = \frac{\Delta U}{q}\right)$, so $V = \frac{J}{C}$

$$[I] = \frac{AV}{m^2} = \frac{\mathcal{E}}{s} \cdot \frac{J}{Q} \cdot \frac{1}{m^2} = \frac{J}{m^2 \cdot s} = \frac{\text{energy}}{\text{area} \cdot \text{second}}$$

1. Two coherent, in-phase microwave sources separated by $d=20.0\,\mathrm{cm}$ create an interference pattern. At a center-line distance of $D=150\,\mathrm{cm}$ from the sources, the separation between the central axis and fifth maximum (m=5) equals $60.0\,\mathrm{cm}$. What is the wavelength of the microwave source?

Note: Find the path length difference directly from the geometry since the approximation d << D is of questionable validity here.

