4.1 Hydrogen molecule

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

1

Q1. Sketch the potential V(r) of an electron due to a single proton (as in a hydrogen atom).

Q2. Sketch the ground state wave function $\psi(\textbf{r})$ of the electron in Q1.

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

Q1. Sketch the potential V(r) of an electron due to a single proton.

 $V = -ke^2/r$

Q2. Sketch the ground state wave function $\psi(r)$ of the electron in Q1.

HST Spring 201

HYS 225 Applications of Modern Physics: from the atom to the diode

3

Potential:

Possible wave functions for the hydrogen molecule:

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

As the proton gets closer, how does the energy of the symmetric wave function $\psi_{1s}(r_A) + \psi_{1s}(r_B)$ compare to that of the antisymmetric wave function $\psi_{1s}(r_A) - \psi_{1s}(r_B)$?

Hint: Think about what the probability density looks like for each.

C. $E_{\text{symm}} < E_{\text{antisymm}}$

As separation decreases, energy splitting $\boldsymbol{\delta}$ increases.

HST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

-

- (a) Energy of symmetric ψ_{σ} and antisymmetric ψ_{σ^*} vs. the interatomic separation R.
- (b) Schematic diagram showing the changes in the electron energy as two isolated H atoms, far left and far right, come together to form a hydrogen molecule.

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

#\$\$¶4\$\$pring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

Example: A hypothetical molecule consisting of three H atoms.

- a. Using the LCAO (linear combination of atomic orbitals) principle, sketch the possible molecular orbitals.
- b. Sketch the associated probability density distributions.
- c. Order the energies of the molecular orbitals.

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod