3.3 Infinite potential well and 3.4 Heisenberg uncertainty principle

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

The free electron: V(x) = 0

 $\Psi(x,t) = A e^{i(kx - \omega t)}$

 $\Psi(x,t)$ at some instant t

The probability density: $|\Psi(x,t)|^2 = A^2$

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

Plane Waves

- $\Psi_1(\mathbf{x},t) = \exp(i(k_1\mathbf{x}-\omega_1t))$
- $\bullet \Psi_2(\mathbf{x},\mathbf{t}) = \exp(i(k_2x \omega_2 t))$
- $\Psi_3(\mathbf{x},t) = \exp(i(k_3x-\omega_3t))$
- $\Psi_4(\mathbf{x},\mathbf{t}) = \exp(i(k_4x \omega_4 t))$
- etc...

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

Superposition principle

• If $\Psi_1(x,t)$ and $\Psi_2(x,t)$ are both solutions to wave equation, so is $\Psi_1(x,t) + \Psi_2(x,t)$.

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diode

Plane Wave: $\Psi(x,t) = Aexp(i(kx-\omega t))$

Wave Packet: $\Psi_n(x,t) = \Sigma_n A_n \exp(i(k_n x - \omega_n t))$

Which one looks more like a particle?

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

Wave packets

A wave packet is:

- A. a bunch of electrons of different energies all traveling together
- B. a short snippet of a wave produced from a wave with a single wavelength
- C. a wave with a localized region of non-zero probability produced by the superposition of many waves of differing wavelengths
- D. all of the above

UST Spring 2010

HYS 225 Applications of Modern Physics: from the atom to the diode

7

Wave packets

A wave packet is:

- A. a bunch of electrons of different energies all traveling together
- B. a short snippet of a wave produced from a wave with a single wavelength
- C. a wave with a localized region of non-zero probability produced by the superposition of many waves of differing wavelengths
- D. all of the above

A wave packet is NOT a bunch of electrons! It is a single electron whose wave function can be expressed as a sum of plane waves.

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

Heisenberg Uncertainty Principle

- $\Delta x \Delta p_x \ge \hbar/2$
- $\Delta y \Delta p_y \ge \hbar/2$
- $\Delta z \Delta p_z \ge \hbar/2$
- $\Delta E \Delta t \ge \hbar/2$

UST Spring 201

PHYS 225 Applications of Modern Physics: from the atom to the diod

g

For copper, work function = 4.7 eV. What is the probability that the electron will be outside of the well? (if copper is at room temperature)

- A. zero chance
- B. very small chance
- C. small chance
- D. likely

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diod

11

b. 1/40 eV << 4.7 eV. So very small chance (e^{-4.7/.02}) an electron could have enough energy to get out.

What does that say about boundary conditions on $\psi(x)$? a. $\psi(x)$ must be same x<0, 0<x<L, x>L,

b.
$$\psi(x<0)\sim 0$$
, $\psi(x>0) \neq 0$

c.
$$\psi(x) \sim 0$$
 except for $0 < x < L$

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

$$V(x) \sim \infty$$
, $x < 0$
 $V(x) = 0$, $0 < x < L$
 $V(x) \sim \infty$, $x > L$

UST Spring 201

HYS 225 Applications of Modern Physics: from the atom to the diod

16

Solving the Schrodinger equation for electron wave in 1 D

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x)$$

- 1. Figure out what V(x) is for situation given.
- 2. Guess or look up functional form of solution.
- 3. Check solution.
- 4. Figure out what boundary conditions must be to make sense physically.
- 5. Figure out values of constants to meet boundary conditions and normalization $\int_{-\infty}^{\infty} dx dx dx = 1$

 $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$

6. Multiply by time dependence $\Phi(t) = \exp(-iEt/\hbar)$ to have full solution.

UST Spring 2010

PHYS 225 Applications of Modern Physics: from the atom to the diode

E quantized by boundary conditions:

$$E = \frac{p^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$

Does this L dependence make sense?

HCT Caring 201

HYS 225 Applications of Modern Physics: from the atom to the diode