
%%Collisions in two-dimensions
% Note: I have assumed that you are storing all positions in one vector
% x = (x1 y1 x2 y2 . . . xN yN) with each row representing a timestep,
% such that the x-position of particle j
% at timestep i is stored as x(i, 2*j)
% and the y-position is x(i, 2*j+1).
% Similarly, the x-component of the velocity of particle j
% at timestep i is v(i, 2*j)
% and the y-component of the velocity is v(i, 2*j+1).
% Please modifiy the code below as necessary.

for i=2:M % where M is the total number of timesteps

% and i = 1 represents
 % the initial positions/velocities

% CHECK FOR COLLISIONS AND UPDATE VELOCITY:
 for j=1:N % For each of the N spheres,
 for k=j+1:N % check the distance to

 % all remaining spheres.
 dsquared = (x(i,2*j)-x(i,2*k))^2 + (x(1,2*j+1)-x(i,2*k+1))^2
 %distance between centers squared
 if dsquared < 4*r^2
 % If the distance between
 % centers squared is less than (2r)^2,
 % then they collide.

 % Find the unit vector from sphere j to sphere k:
 djk=[x(i,2*j)-x(i,2*k) x(i,2*j+1)-x(i,2*k+1)];
 unitdjk=djk/norm(djk);

 % Velocity of sphere j in the "centerline"

%direction of unitdjk:
 vjc=dot(v(i,2*j:2*j+1),unitdjk)*unitdjk;
 % Velocity of sphere j perpendicular to unitjk:
 vjperp=v(i,2*j:2*j+1)-vjc;

 % Velocity of sphere k in the "centerline"

% direction of unitdjk:
 vkc=dot(v(i,2*k:2*k+1),unitdjk)*unitdjk;
 % Velocity of sphere k perpendicular to unitjk:
 vkperp=v(i,2*k:2*k+1)-vkc;

 % To obtain final velocities, swap "centerline" velocities
 % as follows:
 v(i,2*j:2*j+1)=vkc+vjperp;
 v(i,2*k:2*k+1)=vjc+vkperp;

 end
 end
 end

end
 

