
Force Problems

The contraption below is an atwood machine with springs attached between the ground and each of the weights. The spring on M_1 has a sprint constant k_1 . The spring on M_2 has a spring constant k_2 . When the weights are at the same level, as in the picture, the springs are in equilibrium.

Find an expression for the displacement from equilibrium of M₁ in terms of M₂, k₁, and k₂.

Now: IFM, moves up, M2 moves down by the same amount. Displacements are equal and apposite.

 $y_{1} = -y_{2}$ So, replace $-y_{3}$ with y_{1} $X - M_{1}g_{1} - ky_{1} = X - M_{2}g_{1} + ky_{1},$ and solve For y_{1} $g_{1}(M_{2} - M_{1}) = y_{1}(k_{1} + k_{2})$ $y_{1} = \frac{M_{3} - M_{1}}{k_{1} + k_{2}}g_{1}$