More Force Problems

A mass m on a frictionless table is attached to a hanging mass M by a cord through a hole in the table. Find an expression for the speed with which m must move in order for M to stay at rest. Your expression should be in terms of m, M, and r.

let the surface of the table be perpendicular to the y-axis

Then, the line connecting the mass m to the central hole will always be perpendicular to the y axis.

NSL

To remain in uniform Circular motion, $a = \frac{v}{r} = r\omega^2$

$$\chi: T-Mg = 0 =$$

$$T=Mg \mid Q$$

X: T-Mg = 0 = remains stationary

$$0 = m \frac{\sqrt{r}}{r}$$