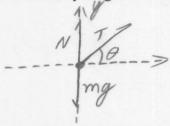

Force Problems


While standing on a rough surface, Stickman is pulling an ice block to the right with a tension T.

a. Draw a freebody diagram of Stickman. (He does not slide)

b. Draw a freebody diagram of the ice block. (It's frictionless)

c. Assume that the Box is frictionless and calculate the velocity of the box after it has traveled a distance d starting from rest. Your velocity should be in terms of m, T, θ , and d.

$$\chi$$
: $T\cos\theta = ma_{\chi}$

From
$$x: a = \frac{T\cos\theta}{m}$$

to get velocity given an acceleration, we use

$$\frac{dV_{x}}{dt} = \alpha \Rightarrow \int dv = \int a dt \Rightarrow V_{x} = \alpha t \Rightarrow V_{x} = \frac{T\cos\theta}{m} t$$

$$\frac{dx}{dt} = V \Rightarrow \int dx = \int V dt \Rightarrow \int d = \frac{1}{2} \frac{T\cos\theta}{m} t^{2}$$

$$\frac{dx}{dx} = V = \int_{0}^{\infty} dx$$

$$\int dx = Vdt =$$

$$d = \frac{1}{2} \frac{T \cos \theta}{m} t^2$$

Solve O Fort: t= mV= TCOSE

Plug into @

 $d = \frac{1}{2} \frac{\text{tcose}}{m} \cdot \frac{m^2 V_c^2}{T^2 \cos \theta} = \frac{1}{2} \frac{m V_c^2}{T \cos \theta}$

and solve For V_{Z} : $V_{Z} = \left[\frac{2dT\cos\theta}{m} \right]^{2}$