Kinematics Problems - Set 1

Consider the right triangle in the picture.

a. Assume that you've been given values for H and θ . Write expressions for O and A in terms of H and θ .

Use basic trig IDs:

$$SIN\theta = \frac{O}{H} \Rightarrow O = HSIN\theta$$

 $COS\theta = \frac{A}{H} \Rightarrow A = HCOS\theta$

b. Assume that you've been given values for O and A. Write expressions for H and θ in terms of O and A.

Pythagorean Theorem:
$$A^2 + O^2 = H^2 = \sqrt{H = \sqrt{A^2 + O^2}}$$

Definition of Tangent:
$$TAN\theta = \frac{O}{A} = 7 \left[\theta = TAN' \left(\frac{O}{A} \right) \right]$$

Consider the vector, \vec{A} , in the picture.

$$A_x = |\vec{A}|\cos\theta$$

$$A_y = |\vec{A}|\sin\theta$$

d. Assume that you know A_x and A_y . Find an expression for θ and the magnitude of \vec{A} .

Same as part b:
$$|\vec{A}| = \sqrt{A_x^2 + A_y^2}, \quad \Theta = TAN'(\frac{A_y}{A_x})$$

Consider the two vectors:

$$\vec{A} = 2\hat{i} + 3\hat{j}$$
$$|\vec{B}| = 5, \theta_B = 30^\circ$$

a. Sketch the two vectors below:

Vector B

b. Sketch the vector sums $\vec{A} + \vec{B} = \vec{C}$ and $\vec{A} - \vec{B} = \vec{D} \implies \text{or } \vec{B} + \vec{D} = \vec{A}$

c. Solve the vector equations in part b. Write vectors \vec{C} and \vec{D} in unit vector notation.

convert B to Br and By First: Ba= |B| cas O8, By= |B| SIN O8 Ba = 5 cos 30 = 4.3 , By = 5 SIN 30 = 2.5

$$C_x = A_x + B_x = 7$$
 $C_x = 2 + 4.3 = 7$ $C_x = 6.3$ $C_y = A_y + B_y = 7$ $C_y = 3 + 2.5 = 7$ $C_y = 5.5$

$$(y = Ay + By =) (y = 3 + 2.5 =) (y = 5.5)$$

$$D_{x} = A_{x} - B_{x} =$$
 $D_{x} = 2 - 4.3 =$ $D_{x} = -2.3$ $D_{x} = -2.3$ $D_{y} = A_{y} - B_{y} =$ $D_{y} = 3 - 2.5 \Rightarrow D_{y} = 0.5$

Consider 3 vectors. Vector $\bf A$ is given by 4.00i + A_y j, vector $\bf B$ has a magnitude of 6.00 and is pointing at an angle of 35.0° with respect to the x axis, and vector $\bf C$ is given by C_x i + 7.00j.

- a. Assuming that $\mathbf{A} + \mathbf{B} = \mathbf{C}$, find the missing components A_y and C_x .
- b. Find the magnitude of C?
- c. Find the angle of \mathbf{C} makes with respect to the x axis?

a)
$$A_{x} + B_{x} = C_{x}$$

 $4.0 + 6 \cdot Cos(35) = C_{x}$
 $(a = 8.9)$
 $A_{y} + B_{y} = C_{y}$
 $A_{y} + 6 \cdot SIN(35) = 7.0$
 $A_{y} = 3.56$
b) $(|\vec{c}| = (8.9^{2} + 7.0^{3})^{6} = 11.3$
c) $\theta = tan^{-1}(\frac{7}{r.9}) = 38^{\circ}$

Vector Problems

A hiker begins a trip by first walking 25 km southeast from her base camp. On the second day, she walks 40 km in a direction 60° north of east.

(a) Sketch the hiker's displacement vector for day 1, $\; \vec{D}_1 \;$, and write the components in unit vector notation. (assume East is \hat{i} and North is

$$D_{i} = 25 \text{ km}$$

$$\Theta_{i} = -45^{\circ}$$

$$D_{i}$$

$$\vec{D}_{1} = D_{1}COS\theta_{1}\hat{A} + D_{1}SIN\theta_{2}\hat{J}$$

= 25 COS(-45) $\hat{A} + 25 SIN(-45)\hat{J}$
 $\vec{D}_{1} = (18A - 18\hat{J}) km$

(b) Sketch the hiker's displacement vector for day 2, \vec{D}_2 , and write the components in unit vector notation.

$$\frac{1}{2}$$
 \overline{D}_{s}

$$\overrightarrow{D}_{s} = D_{s}COS\theta_{s}A + D_{s}SIN\theta_{s}A$$

$$\overrightarrow{D}_{s} = 40cOS(60)A + 40SIN(60)A$$

(c) Sketch the the vector sum of the total trip and solve the vector equation $\vec{D}_1 + \vec{D}_2 = \vec{D}_T$. Write \vec{D}_T in unit vector notation.

$$\vec{D}_{T} = \vec{D}_{1} + \vec{D}_{3} \Rightarrow D_{Tx} = D_{1x} + D_{2x}$$
 $D_{Ty} = D_{1y} + D_{2y}$
 $D_{Tx} = 18 + 20 \Rightarrow D_{Tx} = 38$
 $D_{Ty} = -18 + 36 \Rightarrow D_{Ty} = 18$
 $\vec{D}_{T} = 38x + 18z$

(d) Calculate the magnitude and direction of \vec{D}_T .

$$|\vec{D_{\tau}}| = (38^2 + 18^2)^{1/2} = 42 \text{ km}$$

$$\Theta_{\tau} = \tan^{-1}\left(\frac{18}{38}\right) = 25^{\circ}$$

Vector Problems

After moving three times, you find yourself 5.39 m away from where you started and 21.8° below the x-axis. Your first move was 5.00 m at an angle of 53.1°. Your second move was 6.00 m along the x-axis and some unknown distance along the y-axis. Your third move was some unknown distance along the x-axis and -3.00 m along the y-axis.

(a) Write each of the four vectors in unit vector notation.

$$\vec{M}_{F} = 5.39 \cos(51.8) \mathcal{X} + 5.39 \sin(-21.8) \mathcal{J}$$

$$\vec{M}_{F} = 52 - 2 \mathcal{J}$$

$$\vec{M}_{A} = 5.0 \cos(53.1) \mathcal{X} + 5.0 \sin(53.1) \mathcal{J}$$

$$\vec{M}_{A} = 3.0 \mathcal{X} + 4.0 \mathcal{J}$$

$$\vec{M}_{A} = 6.0 \mathcal{X} + 7.3 \mathcal{J}$$

$$\vec{M}_{B} = X_{B} - 3.0 \mathcal{J}$$

(b) Calculate the unknown components of your second and third move. Make a sketch of the system.

$$\vec{M}_1 + \vec{M}_2 + \vec{M}_3 = \vec{M}_7$$

 $\chi: 3.0 \text{ m} + 6.0 \text{ m} + X_3 = 5 \text{ m} \implies X_3 = -4 \text{ m}$
 $y: 4.0 \text{ m} + Y_2 - 3.0 \text{ m} = -2 \text{ m} \implies Y_3 = -3 \text{ m}$

Alice travels 2.00 km at $20^{\rm o}$ E of N to the first site and then 2.50 km at $11^{\rm o}$ N of E to the next.

Ben travels 3.00 km at 150 S of E to his first site.

- a) Write **analytical** expressions (no numbers) for the \mathbf{x} and \mathbf{y} components of the displacement required for Ben to meet Alice.
- b) Plug the numbers into your analytical equation and get a numeric answer.
- c) Convert the x and y components into magnitude and direction.

Make a clear sketch of the situation. In the sketch, define your coordinate system and all appropriate variables.

Vector equation
$$\overrightarrow{A}, + \overrightarrow{A}, = \overrightarrow{B}, + \overrightarrow{B},$$

$$\overrightarrow{B}, = \overrightarrow{A}, + \overrightarrow{A}, - \overrightarrow{B},$$

$$\overrightarrow{B}, = 2.0 \text{ km}, A_1 = 2.5 \text{ km}, B_1 = 3.0 \text{ km}$$

$$B_{2x} = A_{1x} + A_{2x} - B_{1x}$$

$$B_{2x} = A_{1} \leq A_{2x} + A_{3x} - B_{1x}$$

$$B_{3x} = A_{1} \leq A_{1} \leq A_{2x} + A_{3x} - B_{1x}$$

$$B_{3x} = A_{1} \leq A_{1} \leq A_{2x} + A_{3x} - B_{1x}$$

$$y: B_{3y} = A_{1y} + A_{3y} - B_{1y}$$

$$B_{3y} = A_{1}COS\Theta_{1} + A_{3}SIN\Theta_{2} - B_{1}SIN\Theta_{3}$$

UST Physics, A. Green and M. Johnston, G. Ruch

$$B_{2x} = 2.05IN(20) + 2.5COS(11) - 3.0COS(-15)$$

$$B_{3x} = 0.24 \text{ km}$$

$$B_{3y} = 2.0COS(20) + 2.55IN(11) - 3.05IN(-15)$$

$$B_{3y} = 3.1 \text{ km}$$

(c)
$$|\vec{B}_2| = (0.24^2 + 3.1^2)^{1/2}$$
 $\Theta_4 = \tan^{-1} \left(\frac{3.1}{0.24} \right)$ $|\vec{B}_2| = 3.1 \text{ km}$