Sample Test 1 Phys 111 Spring 2010

Name:	Key	
	<u> </u>	

By writing my name above, I affirm that this test represents my work only, without aid from outside sources. In all aspects of this course I perform with honor and integrity.

Show your work on all of the problems — your approach to the problem is as important as (if not MORE) important than) your final answer.

	~	
Total	Score:	
I Utai	ocore.	

1) (20_{pts)} When we solve kinematics problems, we use two basic equations (one for velocity and one for position) that arise directly from the definitions of velocity and acceleration. Starting with the definitions of velocity and acceleration, derive these equations using calculus and **list any assumptions** that were made.

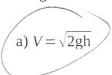
Assuming constant acceleration
$$a = \frac{dv}{dt} \Rightarrow \int_{0}^{t} a dt = \int_{0}^{t} dv$$

$$\Rightarrow at = v - v_{0}$$

$$\Rightarrow v = v_{0} + at$$

$$v = \frac{dx}{dt} \Rightarrow \int_{0}^{t} v dt = \int_{0}^{t} dx \Rightarrow \int_{0}^{t} (v_{0} + at) dt = \int_{0}^{t} dx$$

$$\Rightarrow \int_{0}^{t} v_{0} dt + \int_{0}^{t} at dt = \int_{0}^{t} dx$$


$$\Rightarrow v_{0}t + \int_{0}^{t} at dt = \int_{0}^{t} dx$$

$$\Rightarrow v_{0}t + \int_{0}^{t} at dt = x - x_{0}$$

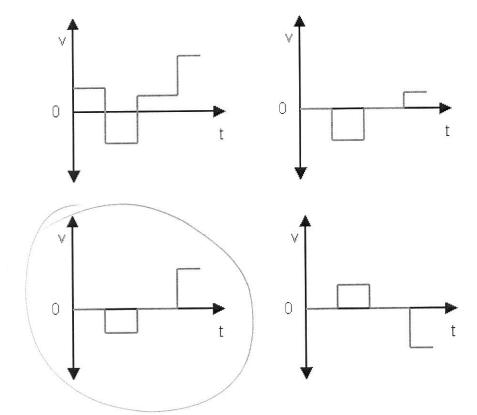
$$\Rightarrow x = x_{0} + v_{0}t + \int_{0}^{t} at^{2} dx$$

Sample Test 1 Phys 111, Fall 2010, Section 1

- 2. Short questions, 4 points each.
- 2.1) A rock drops from rest from a cliff with height h. Find an expression for its velocity just before striking the ground.



b)
$$V = \sqrt{\frac{2h}{g}}$$


c)
$$V = \sqrt{\frac{2g}{h}}$$

d)
$$V = V_o + \frac{1}{2}at$$

2.2) This position versus time plot represents the motion of an object.

Circle the graph that represents the velocity of this object.

SAMPLE TEST 1

PHYS 111, FALL 2010, SECTION 1

For questions 2.3 and 2.4, consider the following situation:

A rock is dropped out of the window of a moving car. At the same time, a ball is dropped from rest from the same height. Assume that air resistance is negligible.

- 2.3) Which will reach the ground first?
 - a) Rock

b) Ball

c) They will hit at the same time.

They both start with

Voy = 0 and ay = -g

additional & velocity is irrelevant

2.4) Which velocity vector will be greater?

a) Rock

b) Ball

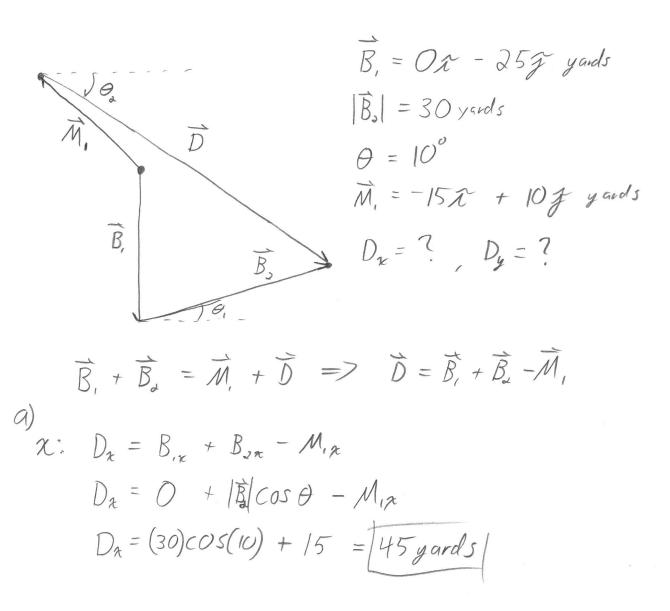
c) The magnitudes will be the same.

The rock will have additional X Velocity so the final relocity will be larger.

2.5) A ball is thrown vertically upward under the influence of gravity. At what point during its flight is its acceleration zero?

a) On the way up

b) At the top


d) Never

c) Just before striking the ground

The acceleration due to gravity is constant.

Sample Test 1 Phys 111 Spring 2010

- 2) It's Sunday afternoon and you have just arrived at the park with your dog Bowser. Ignoring the leash law, Bowser takes off chasing rabbits and squirrels. You started out together but soon part ways. Bowser chases a rabbit due south for 25 yards and then chases a squirrel along a line 10° north of east for 30 yards. In the meantime, your leisurely stroll takes you to a point 10 yards north and 15 yards west of your starting point.
- a) Find the x and y components of the displacement vector between you and Bowser.
- b) Calculate the magnitude and direction of the vector you found in part a.

$$y: D_y = B_{iy} + B_{3y} - M_{iy}$$

= $B_{iy} + |B_{i}| SIN\Theta - M_{iy}$
 $D_y = -25 + (30) SIN(10) + 10 = [-9.8 yards]$

continued L Test I problem 2 continued

b)
$$|\vec{D}| = (D_x^2 + D_y^2)^{1/2}$$

$$= (45^2 + -9.8^2)^{1/2}$$

$$= 46 \text{ yards}$$

$$tan \dot{\theta}_{a} = (\frac{D_x}{D_x}) \Rightarrow \theta_{a} = tan^{-1}(\frac{D_x}{D_x})$$

$$\theta_{a} = tan^{-1}(\frac{-9.8}{45}) = -12^{\circ}$$

Sample Test 1 Phys 111 Spring 2010

- 3) Wily coyote has purchased a new dart gun that he plans to use on roadrunner. Being somewhat uncoordinated he accidentally fires the gun straight up. The gun was 0.50 m above the ground when it fired, the dart reached a maximum height of 50.50 m above the ground, and Wily is 1.00 m tall. What is the darts velocity when it hits him in the head?
- a) Find an expression for the Dart's INITIAL velocity. Plug in the numbers and find a numerical value.
- b) Using the initial velocity, find an expression for the dart's FINAL velocity as it hits him in the head. Plug in numbers and find a numerical value.

$$\frac{1}{\sqrt{2}} = 0$$

$$h_{i} = 0.50m$$
 $h_{i} = 1.00m$
 $h_{max} = 50.50m$
 $V_{i} = ?, V_{i} = ?$

a) We can find the dart's initial velocity by knowing it's maximum height and realizing that V = 0 at that point.

$$y_{x} = y_{0} + V_{0y}t + J_{0y}t^{2}$$

$$V_{y} = V_{0y} + Q_{y}t$$

$$N_{max} = h_{1} + V_{0y}t - J_{0y}t^{2}$$

$$V_{0y} = V_{0y} - gt$$

$$V_$$

continued 1

$$V_{x} = V_{oy} + at$$

$$y = y_{o} + V_{oy}t + 2at^{2}$$

$$O(V_{x}) = V_{oy} - gt$$

$$O(h_{x}) = h_{x} + V_{oy}t - 2gt$$

Awe rats... quadratic in t...

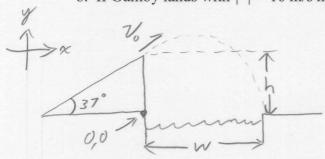
Best to just buck up!

Rewrite @ and apply the quadratic Formula.

In this case, let's Find numbers For t

$$t = \frac{1}{4.8} \left[313 \pm ((31.3)^2 + (2)(0.5 - 1.0)(9.8))^{\frac{1}{2}} \right]$$

So!
$$V_{\mu} = 31.3 - (9.9)(6.37)$$


1D Kinematics, Part 2

4. Having recovered from an earlier crash, Gumby is ready to try new and more exciting stunts on his skateboard. After some prodding from the Blockheads, he decides to jump across a river. Gumby knows that the far bank is 3.0 m below the top of the ramp. The ramp is inclined at 37.0° above the x-axis, and he is moving at 15 m/s when he leaves it.

a. How wide of a river can Gumby jump if he puts the ramp on the edge of the riverbank?

b. If Gumby lands with $|\vec{v}| > 16$ m/s his leg will break. Does Gumby need crutches?

$$h = 3.0 m$$

 $V_0 = 15 m/s$
 $\theta = 37.0^{\circ}$

$$\begin{array}{c}
\chi \\
\chi = \chi_0 + V_{ox}t + 3at^{3}
\end{array}$$

$$W = V_0 \cos \theta t$$

$$y = y_0 + V_{oyt} + \lambda_0 at^2$$

$$0 = h + V_0 SINOt - \lambda_0 gt^2$$

$$=\frac{15\cos(37)}{9.8}\left[15\sin(37+(15^2\sin(37+(2)(9.8)(3)))\right]$$

$$=25m$$

(b) Given: W= 25m What is [V]

 $\frac{\chi}{W = V_0 \cos\theta t} = 7t = \frac{W}{V_0 \cos\theta}$

O=h+VostNOt-'sgt'

Var= Vocoso

Vy=15 COS(37)

VAF= 12.0 m/s

Vyr=VoSINO-gt Vyr=VoSINO-gW Vocose

Vy = 15.5 IN37 - (9.8)(25) 15 COS 37

Vy = -11.4m/s

 $V_{x} = (12^{2} + 11.4^{2})^{\frac{1}{2}} = 16.5 \text{ m/s}$

Gumby needs cruthes