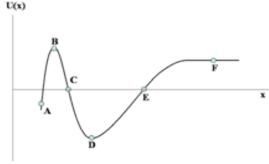
Consider the force due to gravity near the surface of the Earth: $F_g = -mg$

a) Sketch a plot of the Force versus Height (Force on the vertical axis, height on the horizontal axis)

b) Sketch a plot of the potential due to gravity near the surface of the Earth. Let the zero point be a distance h₀ above the ground.

c) Given the Potential Function, $U_g = mgh$, show using calculus how to derive an expression for F_g .

HINT: How did we originally get mgh from mg? How do you undo that operation?


Consider the force due to a spring: $F_s = -k(x - x_{eq})$

a) Sketch a plot of the Force versus the spring compression x (Force on the vertical axis, height on the horizontal axis)

b) Sketch a plot of the Potential due to a spring.

c) Given the Potential Function for a spring, $U_g = \frac{1}{2}k(x-xeq)^2$, show using calculus how to derive an expression for F_s.

The figure below shows the plot of a potential-energy function for a particle moving along the *x*-axis.

a) At each point indicated, state whether the corresponding force F_x acting on the particle is positive, negative, or zero.

A:

D:

B: C: E: F:

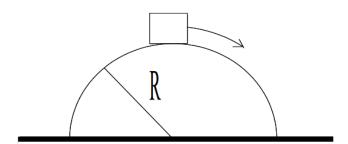
b) At which point does the force have the greatest magnitude? Explain.

c) Identify all points corresponding to stable, unstable, and neutral equilibrium.

d) Assuming the particle starts at point A with a large positive velocity, identify the points where the particle's speed is a maximum, minimum, and constant. Explain. (Remember, in order for there to be a potential energy, the force must be conservative.)

After getting your BS in Physics, you find yourself working as a lab assistant in the stronghold of a mad scientist in a hollowed out volcano in the middle of a remote tropical island.

He is designing a new Mega-Death Ray, but he needs your help with some calculations. The transmogrifier field of the death ray could either have a potential energy function $U_1 = Ax^4$ or $U_2 = Ax^3 - Bx$. A and B are constants and x is the distance as measured from the reaction chamber.

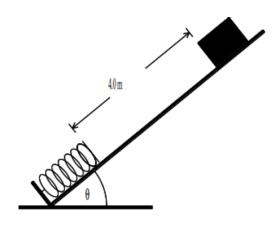

a) Find the force, F_1 , associated with U_1 .

b) Find the force F_2 associated with U_2 .

c) If there are any points where the force goes to zero, the entire Island will explode. Are either of the two force fields safe, or are you in mortal danger?

2. Use *Conservation of Energy* to solve this problem

A block is seated on the top of a hemispherical mound of ice. The block is given a *slight* push (assume $V_0 = 0$) and starts sliding down the ice. If the ice is frictionless, show that the block will lose contact with the ice at a height of $\frac{2}{3}R$, where R is the radius of the ice mound.


3) Use *Conservation of Energy* to solve this problem

A block of mass m is released from rest on an incline that makes an angle θ with the horizontal. It starts a distance l from a spring with spring constant k that is attached to the bottom of the incline. The coefficient of friction between the block and the incline is μ_k .

Find an expression for the maximum compression, d, of the spring.

If it's quadratic, put it into standard form:

You don't need to apply the quadratic formula.

Use Conservation of Energy to solve the following problem.

A stone of mass m is thrown vertically upward into the air from ground level with an initial speed of v_o . If a constant drag force equal to 20% of the stone's weight acts on the stone throughout its flight, what is the speed of the stone in terms of v_o when it returns to the ground?