Name:		
i tuille.		

By writing my name above, I affirm that this test represents my work only, without aid from outside sources. In all aspects of this course I perform with honor and integrity.

Show your work on all of the problems. Your approach to the problem is as important as, if not more important than, your answer. Draw **CLEAR AND NEAT PICTURES** showing coordinate systems and all of the relevant problem variables. Also, <u>explicitly</u> show the **Basic Equations** you are using. Be neat and thorough. The easier it is for me to understand what you are doing, the better your grade will be.

A few potentially useful equations

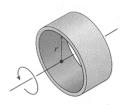
Moment of Inertia, discrete definition $I = \sum m_i r_i^2$

Moment of Inertia, integral definition $I = \int r^2 dm$

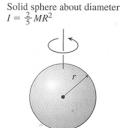
Parallel Axis Theorem $I = I_{cm} + Md^2$

Superposition $I_{Total} = \sum I_i$

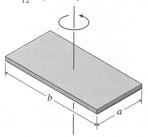
TABLE 10.2 Rotational Inertias

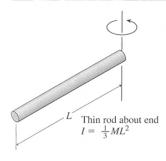


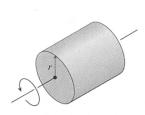
Thin ring or hollow cylinder about its axis $I = MR^2$



Flat plate about perpendicular axis $I = \frac{1}{12}M(a^2 + b^2)$

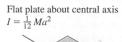


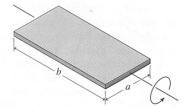




Disk or solid cylinder about its axis $I = \frac{1}{2}MR^2$

Hollow spherical shell about diameter $I = \frac{2}{3}MR^2$





- 1) Derivations
- a) (10pts) Given a differential equation of the form $\frac{d^2x(t)}{dt^2} = -\omega^2x(t)$, write the general solution for x(t), v(t), and a(t) in terms of the angular frequency ω , the amplitude A, and the phase angle ϕ .

b) (10pts) Given the boundary conditions $x(t_0) = x_0$ and $v(t_0) = v_0$, derive an expression for the phase angle ϕ and the amplitude A in terms of x_0 , v_0 , and ω .

- 2) Multiple Choice
- 2.1) A mass attached to a spring oscillates with a period T. If the amplitude of the oscillation is doubled, the period will be:
 - A) *T*
 - B) 1.5 T
 - C) 2*T*
 - D) ½ T
 - E) 4*T*

- 2.2) An object of mass m, oscillating on the end of a spring with spring constant k has amplitude A. Its maximum speed is:
 - A) $A\sqrt{\frac{k}{m}}$

 - B) $A^2 \frac{k}{m}$ C) $A\sqrt{\frac{m}{k}}$
 - D) $A\frac{m}{k}$

- 2.3) In simple harmonic motion, the magnitude of the acceleration is greatest when:
 - A) the displacement is zero
 - B) the displacement is maximum
 - C) the speed is maximum
 - D) the force is zero
 - E) the speed is between zero and its maximum

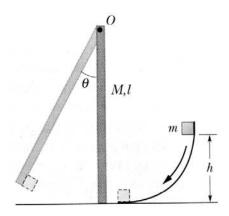
2.4) The displacement of an object oscillating on a spring is given by $x(t) = A\cos(\omega t + \omega t)$.

If the initial displacement is zero and the initial velocity is in the negative x direction, then the phase constant ϕ is:

- A) 0 radians
- B) $\pi/2$ radians
- C) π radians
- D) $3\pi/2$ radians
- E) 2π radians
- 2.5) A simple pendulum of length L and mass M has frequency f. To increase its frequency to 2f:
 - A) increase its length to 4L
 - B) increase its length to 2L
 - C) decrease its length to L/2
 - D) decrease its length to L/4
 - E) decrease its mass to < M/4

A particle of mass m slides down a frictionless surface, collides with a uniform vertical rod of mass M and length l, and sticks. Let m = M and Treat the mass m as a point mass at the end of the rod.

- a. What is the amplitude of the resulting oscillator after the collision assuming the rod was initially at rest?
- b. What is the angular frequency of the resulting oscillator?



A block with a mass of m = 2.00 kg is attached to a spring with a spring constant k = 100 N/m. When t=1.00 s, the position and velocity of the block are x(1)=0.129 m and v(1)=3.415 m/s.

- a) Find the angular frequency, ω , of the oscillator.
- b) Find the phase constant, ϕ .
- c) Find the amplitude, A.
- d) What was the position of the block at t = 0.00 s?

In the system shown below each of the three springs have a spring constant of 50 N/m and the bar is mounted on a frictionless pivot at its midpoint. The period of small oscillations is found to be 2.0 s.

The moment of inertia for the beam is $I = \frac{1}{12}ml^2$.

What is the mass of the bar?

