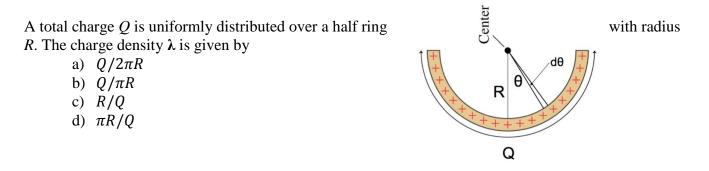
A total charge Q is uniformly distributed over the length L of a line charge distribution. The charge density λ is given by

- a) Q/L
- b) (Q/L)dx
- c) L/Q
- d) *Qdx*

A total charge Q is uniformly distributed over the length L of a line charge distribution. The total charge inside a short element dx is given by

- a) Q/L
- b) (Q/L)dx
- c) L/Q
- d) *Qdx*

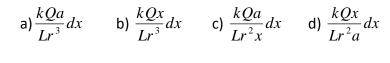


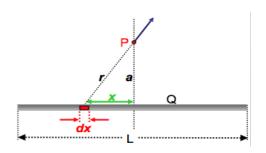


A total charge Q is uniformly distributed over a half ring with radius R, as above. The total charge inside a small element $d\theta$ is given by:

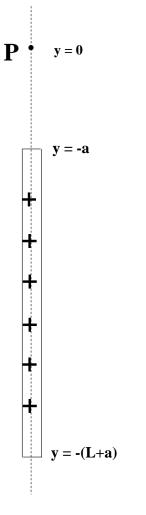
- a) $(Q/2\pi)d\theta$
- b) $(Q/\pi)d\theta$
- c) $(Q/2\pi R)dR$
- d) $(Q/\pi R)dR$

A total charge Q is uniformly distributed over the length L of a line charge distribution. The \hat{j} (vertical) component of electric field at point P created by a short element dx is given by:





Find the net electric field vector at point P due to a uniformly charged rod of total charge Q and length L. Point P is at the origin, a distance a from one end of the line.



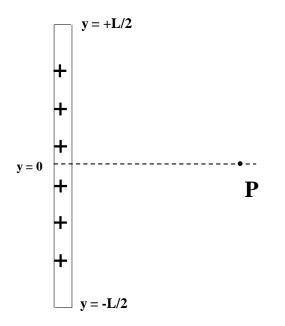
A charged rod of length *L* has a <u>non</u>-uniform linear charge density $\lambda = \lambda_0 \frac{x^3}{L^3}$ C/m.

a) Calculate the Total Charge, Q, of the rod.

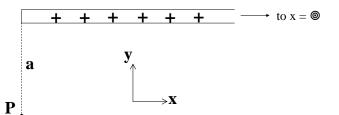
b) Calculate the net electric field vector at the point P shown in the figure.



Find the net electric field vector at point P due to a uniformly charged rod of total charge Q and length L. Point P is a distance a from the rod, and it lies along a line that perpendicularly bisects the rod.



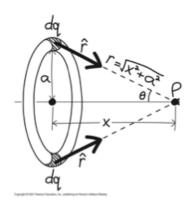
A **semi-infinite** (i.e., infinite in one direction) plastic charged rod has uniform charge density λ . Starting from scratch, find the net electric field vector at point *P*, a distance *a* beneath one end of the rod. Show all work. Write your answer in terms of λ , *a*, and other constants.



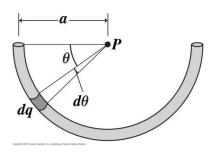
Hint: E_{tot} has both x and y components here because there's no symmetry. Calculate E_x and E_y separately and then combine the vectors. Also,

$$\int \frac{x dx}{\left(x^2 + a^2\right)^{3/2}} = \frac{-1}{\sqrt{x^2 + a^2}}$$
$$\int \frac{dx}{\left(x^2 + a^2\right)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{x^2 + a^2}}$$
$$\lim_{x \to \pm \infty} \frac{x}{\sqrt{x^2 + a^2}} = \pm 1 \text{ (think of a \rightarrow 0)}$$

A ring of radius a carries a charge Q distributed evenly over the ring. Find an expression for the electric field at any point on the axis of the ring.



A semicircular loop of radius *a* carries a positive charge *Q* distributed uniformly over its length. Find the electric field at the center of the loop (point *P* in the figure). *Hint:* Divide the loop into charge elements dq as shown, and write dq in terms of the angle $d\theta$. Then integrate over θ .



Page 7